
Journal o f  Statistical Physics, Vol. 57, Nos. 1/2, 1989 

Large-n Limit of the Heisenberg Model: 
The Decorated Lattice and the Disordered Chain 
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The critical temperature of the generalized spherical model (large-component 
limit of the classical Heisenberg model) on a cubic lattice, whose every bond is 
decorated by L spins, is found. When L ~ co, the asymptotics of the tem- 
perature is T c ~ aL-1.  The reduction of the number of spherical constraints for 
the model is found to be fairly large. The free energy of the one-dimensional 
generalized spherical model with random nearest neighbor interaction is 
calculated. 

KEY WORDS:  Spherical model; decorated lattice; critical temperature; 
Jacobi matrix. 

1. Considerable interest has recently been displayed in the behavior of 
quasi-one-dimensional systems (see refs, 1 and 2 and lists of references 
therein). Particles in such systems interact predominantly along specific 
directions of a d-dimensional space, so that there are two length scales. One 
of them determines the sizes in which the system may be regarded as one- 
dimensional; the other one is the sample size. 

Therefore it is reasonable to consider a simple but sufficiently instruc- 
tive, exactly solvable model defined on a geometry that is restricted in some 
way. In particular, a version of the spherical model on a d-dimensional 
cubic lattice with each bond decorated by L spins (Fig. 1), which below 
will be referred to as just as decorated, was considered in ref. 2. The 
authors regarded their results as modeling certain aspects of helium super- 
fluidity in porous media. 

However, interpretation of the results of ref. 2 involved a problem. As 
is known, in the translationally invariant case the spherical model (charac- 
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Fig. 1. Two-dimensional  decorated lattice with L = 3. 

terized by a single spherical condition) is a large-n limit of the classical 
(n-vector) Heisenberg model (3'4) and describes sufficiently well the behavior 
of the latter even for n = 3 (s). In the absence of the translational invariance, 
this is generally speaking not the case (see, e.g., ref. 6 presenting a counter- 
example). According to refs. 7 and 4, in the limit n ~ o% we obtain a 
generalized spherical model (GSM), in which the number of spherical 
constraints depends on the degree of inhomogeneity. For example, in the 
disordered case there arises a macroscopic number of such constraints, 
while for a decorated lattice there are generally speaking 1 + ( L +  i)/2 
constraints. However, the version of the spherical model proposed in ref. 2, 
for any L, contains only two spherical conditions. Therefore, the physically 
very important relationship of this model to the large-n limit of the 
Heisenberg model is not at all clear. 

Here we propose a simple method to determine the critical tem- 
perature Tc of the GSM (of the large-n limit of the Heisenberg model) on 
the decorated lattice, which in particular leads to the asymptotics 
T c . . ~ a L  - I  for L ~  oo [see formulas (19)-(2t) below]. This asymptotics 
has the same form as that found in ref. 2, but with a different constant a. 2 

The present study may be of interest not only in the context of quasi- 
one-dimensional systems. The reason is that the spherical constraints which 
are a kind of self-consistency condition represent a system of transcendental 
equations whose solution is the basis of the study of the thermodynamics 

2 Note  here that for the Ising model on the decorated lattice the analogous asymptotics  is 
T c ~ ( l n L )  1.(13) 
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of the GSM. The inhomogeneous GSM is therefore very complicated even 
for qualitative analysis to be made. Until now exact solutions have been 
known for it only in the cases where this system consists of two 
equations,Ca 1o) and qualitative analysis only covers a single example. (1~ 
Thus, we are providing another and richer example [the number of equa- 
tions being 1 + (L + 1)/2-1, where the exact solution of the system can be 
found. Note also that our calculation yields not only the critical tem- 
perature, but also the fact that the GSM on the decorated lattice for any 
L is determined by only three spherical conditions. 

The main trick enabling us to obtain the final expressions (19) (21) is 
application of the Cauchy problem solutions for the second-order finite-dif- 
ference equation (11) generated by the Jacobi matrix (6) for the analysis of 
the spherical conditions. This fact is due to the quasi-one-dimensionality of 
the problem and is fairly general in nature. In Section 4 we demonstrate it 
by similarly calculating the free energy of a one-dimensional GSM with 
random nearest-neighbor interaction. 

2. Let us define the GSM on the decorated lattice. Any site of such 
a lattice may be represented as R = r + j 8m, where r E (L + 1) S ,  c] m ( m  = 

1,..., d) is the orthonormal basis of Z d, and j = 0, 1,..., L. The free energy of 
the model in a finite volume V, V= {ReY_ d, R = r + j c ~ m ;  r m = 0 ,  L-I- 1 ..... 
( N -  1)(L+ 1), m =  1,..., d ; j = 0 ,  1 ..... L} is as follows(7): 

f v  = max F({zR}) 
{ZR}RevED 

where 

1 exp{ F({zR})-- fl lv]lnf~,v) - 2  - ~ XRXR' 
( R , R ' )  

+ ~ (ZRXZR--ZR)]} H dXR (1) 
Rck"  R ~ V  

and the set D consists of those spherical constants {ZR}R~ V for which the 
quadratic form 

2 (Hx, x)= - ~ xexR, + • ZRX e (2) 
( R , R ' )  R e V  

is positively defined. The symbol 5Z<R,R,) denotes summation over the pairs 
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of nearest neighbors from V, taking into account periodic boundary condi- 
tions. Note that the maximum in (1) is attained for those z R for which 

= 1, R s  v (3) 

Let Tr,, m = 1,..., d, be translations in 2 a on the vectors (L + 1 ) (~m, 
and let Qm be reflections in 77 a with respect to the planes Rm = (L + 1)/2. 
The function F({zR}R~ v) in (1) is upward convex and takes on infinitely 
large negative values at the boundary of the set D, and the system (3) is 
invariant under the actions Tm and Qm. Therefore, the unique solution (3) 
of D is also invariant under Tm and Qm. Thus, we may restrict ourselves 
from the very beginning to those {ZR}R~ v for which 

z~+j6 ~z j ,  r e ( L + l ) Z  d, j = l  ..... d 
(4) 

Z j  ~ - - - Z L + I _  j 

Let us assume that L is an odd number, i.e., L = 2 l - 1  (the case of even 
L is treated similarly). In view of (4), the free energy of the GSM on the 
decorated lattice is as follows: 

f =  lim f v, f v = max F(zo,..., zt) 
r vI  ~ o0 (zo,...,zl) e D 

where 

1 27z I 
F(zo,..., z,) = - ~ In --o- + ~ In det H 

Lp P zp ~vl 

2(1 + Ld) 
(Zo + 2dzl + ... + 2dzt_ ~ + dzx) (5) 

H is an operator generated by the quadratic form (2) and D = {(z0,..., zt): 

Let us calculate det H, using the structure of H. Since it commutes 
with the operators Tin, its eigenvectors 6 have the Bloch form 

~9R=exp i i L + I  ] UR 

and therefore d e t H = l q K ~ v ,  detHK, where V * =  {(K1 ..... Ka): Km= 
27Cqm/N, qm --= 0, 1,..., N- -  1 }, and the matrices H~ are as follows: 
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Zo - 1  0 . . . 0  - e  iKl - 1  0 " ' ' O  - - e  iKz --1 0 ' ' ' 0  --e ix~ 

- 1  
0 

0 
_ _  c i K I  

- 1  
0 

0 
- - C  iK2  

- 1  
0 

0 
- -  C i K d  ~_ _ 

J 

0 

]__ 

0 

J 

where the diagonal blocks J are the Jacobi matrices 

J =  

z I - - 1  

- 1  z2 - 1  0 \ 

- 1  zl - I  

0 - 1 z 2 

1 

- l /  
Z I 

(6) 

By expanding first det H K by the first row and then every resulting cofactor 
by the first column, we obtain the following: 

det Hu  = (det j )d  [Z ~ _ 2d(Gl,, + GI,z~ 1) + E(K)GI,zz 1] 

where G is the matrix inverse to J and 

(7) 

d 

E ( K ) = 2  ~ ( l - c o s K m )  
m = l  
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Substituting (7) into (5) and performing the thermodynamic limit, we find 
the free energy of the GSM on the decorated lattice: 

f =  max F(z o ..... z,), 
(zo,..., Zl) ~ D 

1 2re 1 
F(zo,..., z,) = - ~ In ~-  + 

2(1 + Ld) 

x In det J + ~  D,2~1 d 

dK 
x [Zo-2d(Gj,1 +Gi,2t ~)+E(K)G1,2, 1] (2~)a 

(Zo + 2dZl  + " '"  + 2dzt 1 + dzt)~ 
J 

(8) 

If there is no phase transition, the maximum in (8) is attained at the unique 
point (z o .... , zt) ~ D, for which OF(zo,..., zl)/Oz i = O, j = 0 ..... l. By differen- 
tiating F(zo,..., zt), we arrive at the system of equations 

1 1 d K  

Zo - 2d(Gl,~ + G1,21_ 1) Jr- E(K)GI,21_ 1 (2~) a 
- - - 1  

(9) 

l 1 ( G I , j + G j , 2 ,  1 ) 2 - [ E ( K ) / d ] G I , j G j , 2 , _ j  d K  

~Gj, j + ~  fEo,2~y Zo -2d(Gl,~ +G, 2~_~)+ E(K)G~,2~_x (2g) d' j =  1,..., l, 

for finding the spherical constants Zo ..... zt. 
As is known, the mathematical mechanism of the phase transition in 

the spherical model is the sticking of the solution (7) to the boundary 0D 
of the set D (3). The sticking means that the maximum in (8) for fl~>flc is 
attained at (Zo ..... zt) ~ •D and the system (9) has no solution. For d =  1 
and d = 2  the system (9) always has a solution in D and thus the phase 
transition is absent. If d~>3, then, because Zo =2d(G~,l + G~,2~_~) on the 
boundary of the set D, the critical temperature T, = tic 1 can be found by 
solution of the system of equations 

flo - 1  
flcG1,2/ 1 

1 1 G l j G j 2 I _  1 
~ - G L j ~ - ( G I , j ~ - G i , 2 I  1) 2 -  ' ' = 1 ,  j = l  ..... l 

d~,. GI,21- 1 # c - -  - -  

(lo) 
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for tic, Zl . . . . .  z l. The symbol flo denotes here the integral 

: 1 dK 
~o t 

J[o,2~, E(K)  (2~z) d 

= f  1 dK 

Eo ~3~,~ 2 "~m = l d  (1 - cos K,~) (2~) d 

Note that flo 1 coincides with the critical temperature of the 
Berlin-Kac spherical model on the cubic lattice Zd. (3) 

3. To solve the system of equations (10) let us 
representation(11) 

standard 

use the 

yjWm 
) W ' j>~m 

c,m 
' = ]ymWj j ~ m  

t W '  

where y: and w: are the solutions of the Cauchy problem for the finite- 
difference second-order equation generated by the Jacobi matrix (6) for the 
case of )~ = 0, namely 

y,(~.) = 1; --y2()~)= ()~ - -z , )  y~(2) 

- - y y + , ( ) ~ ) = ( 2 - - Z j ) y j ( 2 ) + y j _ , ( 2 ) ,  j = l , . . . , /  

- y,+:+ ,(.Z) = (2 - z, :) y:+j(:~) + y:+:_ ,(;~), 

w:(2) = y2,_:(2), j =  1 ..... 2 l -  1 

and W =  yj+ 1 wj - y/wj+ 1 = const. 
The system (10) then becomes as follows: 

j = l  ..... l - 1  
(11) 

/~o w=/L  

d - 1  
d YJWJ+f l~  j =  1,..., l 

(12) 

Having solved it, we shall find tic and zl ..... z~ by formulas (11). 
Let 

T+ = +/~o -+ 

yj  ='E + y j  q-'E Wj, l~j = g y j  q-'C + Wj 

822/57/1-2-4 
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Then 

= 2 j + 1 %  - Y j %  +1 = ~ w 

\ 7 2/2 ~: [d@ (~@+4/~o)J 
(13) 

and the last l equations of (12) will become 

~j% =tic l~, j = l  ..... l (14) 

From (13) and (14) it follows that yj+ 1/Yj satisfy the equations 

.]~j .)~j + 1 tiC' 
j = l , . . . , l - 1  (15) 

The condition (z0,..., z~) E t?D under which we are to solve (10) implies the 
inequality J >  0. Since the eigenvalues of J coincide with the roots of the 
polynomial y2l(2), (11 ), and the roots of the polynomials yj(2) and y/+ 1(2) 
are intermittent, then all yj = y~(0) for such z0,..., z~ should have the same 
signs. Therefore, it follows from (15) that 

+ (~2 _~_ 4fl,.)1/2 
Yj+ I = @j, t -  2fi,, , j = l  ..... l - 1  

Similarly, #j+~ = t - l k j ,  and thus, in view of wz = Yt, 

W1 = t2l 2yl = tL lYl, fl~UV=(v+ + v _ w l ) 2 t  L i (16) 

On the other hand, 

fled m = ( ~ - +  --~"c Wl)(~" - - ~ z +  w1) (17) 

Comparison of (16) and (17) shows that 

_ I L  1 "C - - ' C +  

w 1 - tL_ 1 (18) "C - - ' L +  

Substituting this expression into (16), we arrive at the equality 

W i l e  = t L 1 
(~ t L ~_~+)2  
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which, combined  with the first equat ion  of (12), yields the equat ion  for tic: 

Since tic and t are related as 3,  = c~t(t 2 -  1) 1, then 

flc=[dd--~l(~Zd~-+ifio)]'/2to//"(t2-e, (19) 

where to is the root  of the equat ion 

t flU2 ttL- 1)/2 

t 2 -  I =Z '+  - - Z "  l (L 1)/2 (20) 

lying in the interval (1, ( z + / z  )I/(L 11). This requi rement  on to is due to 
the inequali ty w t > 0  and the dependence of w 1 on t, (18). Note  that  the 
same expression for fl,. is valid for even L. 

F r o m  (19) and (20) it is easy to obta in  the asymptot ics  of  the critical 
t empera tu re  T c = f i /~ for L ~ oo: 

Tc - c~(L - 1~ In - -  + O 1) 2. 

2 

- (L - 1){ [ ( d -  1)/d] [ ( d -  1 ) /d+  4rio] }1/2 

x t n [ ( d - 1 ) / d + 4 f l o ] l / 2 + [ ( d - 1 ) / d ] ' / ; ( 1 )  
[ ( d -  1)/d+43o3 ~/a- [ ( d -  l)/d] 1/2+0 (~--- 1) 2 (21) 

Besides the simple expression for the critical t empera tu re  for finite L 
and its asymptot ics  for L --+ o% an impor t an t  result of the above  a rguments  
is the reduct ion of the number  of the spherical constants  zj. F r o m  the solu- 
t ion of (20), one can find Ys, wj, and then zj. According to (11), all zj, 
j =  2 ..... l -  1, are equal. The same is the case for the solution of  (9) with 
T >  T~. Thus,  the set of  the spherical  constants  z R for the generalized 
spherical model  on the decorated lattice (1), for any  L, contains not  more  
than three different elements (Zo, z 1 = zz, z2 = z3 . . . . .  z~_ 1). Note  that  
the modified spherical model  (2~ contains  only two spherical constants.  

4. The technique used in the preceding section to solve the system 
(10) is due to the existence of one-dimensional  s tructures on the decora ted  
lattice. To  show it in a clearer way, let us calculate in the same fashion the 
free energy of a one-dimensional  generalized spherical model  with r a n d o m  
nearest  ne ighbor  interaction.  



50 Khoruzhenko e t a / .  

The partition function of the model is 

Z =  exp fl J , x , x ,+ ,  - Z 7 % J1 [ I  dx, (22) 
IVI j N j=--N [jI<~N 

where the quantities Jj form an ergodic sequence and the spherical con- 
stants z~ are to be found from the conditions 

(x  2)  = 1, I J[ ~<N (23) 

By calculating the Gaussian integrals in (23), we arrive at the system of 
transcendental equations 

1 
gGi, j = 1, IJl 4 N  (24) p - -  

to determine {7--.j}]j]<.N. The symbol G now denotes the matrix inverse to 
the matrix 

z - - J  N 

J N Z--N+I 

0 

--J-N+1 

".. 

o 

- - JN  2 ZN 1 - - JN  1 

- - J N -  1 ZN 

(25) 

Introduce as in the preceding section [-see Eq. (11)] the solutions Y1 and wj 
of the Cauchy problem for the finite-difference equation generated by (25). 
Then the system (24) will transform to the following form [cf. (14)]: 

yjwj = flW, ]j] ~<N, 

W =  yj+ 1 wj -- Y:WJ+ 1 

Repeating the arguments of the preceding section, we find that 

(1 + 4f12J~) 1/2 + (1 + 4f l zJ  2 l) I/2 
zj = 2fl , rJl < N  

(1 + 4f12J 2_ 1) 1/2 + 1 (1 + 4flzJ2_N) 1/2 + 1 
ZN -- 2fl ' Z--N -- 2/3 
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Note that earlier the solution of (24) was found for V= Z and used to 
calculate the internal energy of the model. {12) 

In order to calculate the free energy of the model, let us integrate (22) 
with respect to the variable x u. The spherical constant z X+l will as a 
result be renormalized: 

Z-.N+I -+Z N+I :Z--N+I 
j2_ N (1 + 4f12j2-N + 1 ) 1/'2 -}- 1 

z N 2 f i  

and there will appear the multiplier {4a/J1 + 4f12J 2_ ?v) l'2 + 1 ] }'/2 before 
the integral. After having integrated successively with respect to the other 
variables, we have 

I 4~ ] 1/2 
Z ~ -  1 ~  2 2 1/2 + 4fl J j  ) + 

Hence, 

f=-~-+~--fiMln2~z 1 { l + ( l + 4 fl 2J ~ ) l /2 } - M { ( l + 4 fl 2J ~ ) t /2 2fl ] 

provided that 

M{(1 + 4f12Jo2) 1/'2 } < + 

where M{.  } denotes the average over the realizations of Jj. This expres- 
sion, as would be expected, coincides with the large-n limit of the free 
energy of the respective Heisenberg model which was directly calculated in 
Supplement IV of ref. 6. 
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